277 research outputs found

    Refining structures against reflection rank: an alternative metric for electron crystallography.

    Get PDF
    A new metric is proposed to improve the fidelity of structures refined against precession electron diffraction data. The inherent dynamical nature of electron diffraction ensures that direct refinement of recorded intensities against structure-factor amplitudes can be prone to systematic errors. Here it is shown that the relative intensity of precessed reflections, their rank, can be used as an alternative metric for refinement. Experimental data from erbium pyrogermanate show that applying precession reduces the dynamical transfer of intensity between reflections and hence stabilizes their rank, enabling accurate and reliable structural refinements. This approach is then applied successfully to an unknown structure of an oxygen-deficient bismuth manganite resulting in a refined structural model that is similar to a calcium analogue.The authors thank the EPSRC for financial support through grant number HO1771

    Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis.

    Get PDF
    Three-dimensional (3D) reconstructions from electron tomography provide important morphological, compositional, optical and electro-magnetic information across a wide range of materials and devices. Precession electron diffraction, in combination with scanning transmission electron microscopy, can be used to elucidate the local orientation of crystalline materials. Here we show, using the example of a Ni-base superalloy, that combining these techniques and extending them to three dimensions, to produce scanning precession electron tomography, enables the 3D orientation of nanoscale sub-volumes to be determined and provides a one-to-one correspondence between 3D real space and 3D reciprocal space for almost any polycrystalline or multi-phase material.A.S.E. and P.A.M acknowledge financial support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 291522-3DIMAGE, the Seventh Framework Programme of the European Commission: ESTEEM2, contract number 312483, EPSRC grant number EP/H017712/1 and the Royal Society. R.K. acknowledges financial support from Rolls-Royce, EPSRC and the BMWi under EP/H022309/1, EP/H500375/1 and grant number 20T0813. We are grateful to Professor Edgar Rauch for valuable discussion on the use of the Astar system, to Dr Cathie Rae and Dr Mark Hardy of Rolls-Royce for supply of the superalloy samples and valuable discussion about their microstructure, Dr Zineb Saghi for help with the tomographic reconstructions and Dr Francisco de la Peña for help with the NMF decompositions.This is the final version. It was first published by NPG at http://www.nature.com/ncomms/2015/150601/ncomms8267/full/ncomms8267.html

    Denoising time-resolved microscopy image sequences with singular value thresholding.

    Get PDF
    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second.Junior Research Fellowship from Clare CollegeThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ultramic.2016.05.00

    Very weak electron-phonon coupling and strong strain coupling in manganites

    Get PDF
    The coupling of the manganite stripe phase to the lattice and to strain has been investigated via transmission electron microscopy studies of polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a lockin to q/a=0.5q/a^*=0.5 in a sample with x>0.5x>0.5 has been observed for the first time. Such a lockin has been predicted as a key part of the Landau CDW theory of the stripe phase. Thus it is possible to constrain the size of the electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of the electron-electron coupling term. In the thin film samples, films of the same thickness grown on two different substrates exhibited different wavevectors. The different strains present in the films on the two substrates can be related to the wavevector observed via Landau theory. It is demonstrated that the the elastic term which favours an incommensurate modulation has a similar size to the coupling between the strain and the wavevector, meaning that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure

    Competition for the in vitro binding of radioiodinated human follicle-stimulating hormone in reptilian, avian, and mammalian gonads by nonmammalian gonadotropins

    Full text link
    Radioiodinated human FSH (125I-hFSH) was used to study the specificity of the gonadotropin binding sites of various reptilian, avian, and mammalian gonadal tissues by examining competitive interactions with several nonmammalian gonadotropins. All preparations of nonmammalian gonadotropins showed some activity in these radioligand assays, but wide variations in activities were evident depending on the source of the tissue and source of the hormone. Several cases of marked species specificity in binding were apparent: Nonmammalian hormones were relatively inactive with porcine granulosa cells; frog and snake hormones were relatively inactive in turtle tissues; and frog hormones were essentially inactive in avian tissues. FSH-LH specificity of binding determined with hormones of nonmammalian origin differed significantly from that previously described with the aid of mammalian gonadotropins. In particular, when tested with some tissues, three preparations of LH, from the turkey, sea turtle, and frog, were in some cases more active in competing for 125I-hFSH binding than preparations of FSH from the same species; this activity could not be readily accounted for by FSH contamination. These comparative data demonstrate the existence of considerable overlap in the binding characteristics of some species of FSH and LH; the observed differences probably reflect evolutionary changes in both gonadotropin binding sites and in the structure of the gonadotropins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21644/1/0000028.pd

    Compressed sensing electron tomography of needle-shaped biological specimens--Potential for improved reconstruction fidelity with reduced dose.

    Get PDF
    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques.The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative–I3), as well as from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 291522 - 3DIMAGE. B.W. and E.S. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SPP 1570 as well as through the Cluster of Excellence “Engineering of Advanced Materials” at the Friedrich-Alexander-Universität ErlangenNürnberg. G.D. and C.D. acknowledge funding from the ERC under grant number 259619 PHOTO EM. B.W. acknowledges the Research Training Group “Disperse Systems for Electronic Applications” (DFG GEPRIS GRK 1161). R.L. acknowledges a Junior Research Fellowship from Clare College.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ultramic.2015.10.02

    Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range

    Get PDF
    In this article we present a new type of 1D nanostructures consisting of supported hollow ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs). The 3D reconstruction by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) electron tomography reveals that the Ag NPs are distributed along the hollow interior of the ZnO NRs. Supported and vertically aligned Ag-NPs@ZnO-NRs grow at low temperature (135 °C) by plasma enhanced chemical vapour deposition on heterostructured substrates fabricated by sputtered deposition of silver on flat surfaces of Si wafers, quartz slides or ITO. The growth mechanisms of these structures and their wetting behavior before and after visible light irradiation are critically discussed. The as prepared surfaces are superhydrophobic with water contact angles higher than 150°. These surfaces turn into superhydrophilic with water contact angles lower than 10° after prolonged irradiation under both visible and UV light. The evolution rate of the wetting angle and its dependence on the light characteristics are related to the nanostructure and the presence of silver embedded within the ZnO NRs. ÂEuropean Union NMP3-CT-2006- 032583Ministerio de Ciencia e Innovación MAT2010-21228, MAT2010-18447, CSD2008-00023Junta de Andalucía P09-TEP-5283, CTS-518

    Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

    Get PDF
    A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a postannealing process in vacuum in order to remove the organic template. As a result, an ample variety of inorganic nanotubes are made with tunable length, hole dimensions and shapes and tailored wall composition, microstructure, porosity and structure. The fabrication of multishell nanotubes combining different semiconducting oxides and metal nanoparticles is as well explored. This method provides a feasible and reproducible route for the fabrication of high density arrays of vertically alligned nanotubes on processable substrates. The emptying mechanism and microstructure of the nanotubes have been elucidated through SEM, STEM, HAADF-STEM tomography and energy dispersive X-ray spectroscopy. In this article, as a proof of concept, it is presented the straightforward integration of ZnO nanotubes as photoanode in a photovoltaic cell and as a photonic oxygen gas sensorPeer reviewe
    corecore